Maximal surfaces in Lorentzian Heisenberg space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...

متن کامل

Sym-Bobenko formula for minimal surfaces in Heisenberg space

We give an immersion formula, the Sym-Bobenko formula, for minimal surfaces in the 3-dimensional Heisenberg space. Such a formula can be used to give a generalized Weierstrass type representation and construct explicit examples of minimal surfaces. Mathematics Subject Classification: Primary 53A10, Secondary 53C42.

متن کامل

Lorentz Surfaces and Lorentzian CFT

The interest in string Hamiltonian system has recently been rekindled due to its application to target-space duality. In this article, we explore another direction it motivates. In Sec. 1, conformal symmetry and some algebraic structures of the system that are related to interacting strings are discussed. These lead one naturally to the study of Lorentz surfaces in Sec. 2. In contrast to the ca...

متن کامل

A Family of Maximal Surfaces in Lorentz-minkowski Three-space

We prove the existence of an infinite family of complete spacelike maximal surfaces with singularities in Lorentz-Minkowski three-space and study their properties. These surfaces are distinguished by their number of handles and have two elliptic catenoidal ends.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2011

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2011.01.003